
1 Ralf has an iron.

He models the base as a triangle joined to a trapezium.

Not drawn accurately

1 (a) The iron applies a force of 25 newtons (N)

$$pressure = \frac{force}{area}$$

Work out the pressure using Ralf's model.

[4 marks]

Area of A:
$$\frac{1}{2} \times (13+10) \times 12 = 138$$

Area of
$$B: \frac{1}{2} \times 10 \times 8 = 40$$

pressure =
$$\frac{25}{178}$$
 = 0.140

Answer N/cm²

greater than	equal to	less than	
•		[2	marks
The actual area is	bigger. (1)		
	Give a reason for your answer.	greater than equal to Give a reason for your answer. The actual area is bigger.	Give a reason for your answer.

2 Density =
$$\frac{\text{mass}}{\text{volume}}$$

The mass is divided by 2 and the volume is multiplied by 4

What happens to the density?

Circle your answer.

[1 mark]

Which **one** of these is a unit of density?

Circle your answer.

[1 mark]

g/cm²

density = $\frac{\text{mass}}{\text{volume}}$

4 Two objects, J and K, are applying pressure to areas of ground.

$$pressure = \frac{force}{area}$$

For J, the force is 18.9 newtons and the area is $0.45\,\text{m}^2$

pressure for J: pressure for K = 7:8

area for J: area for K = 9:5

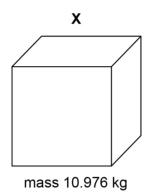
Work out the force for K.

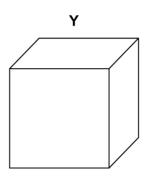
pressure of $T : \frac{18.9}{0.45} = 42$

[4 marks]

pressure of $k: \frac{42}{7} \times 8 = 48$

Area of $k : \frac{0.45}{9} \times 5 = 0.25$


Force of K: 48 x 0.25


· 12

5 Here are two solid cubes, X and Y.

The mass of X is 10.976 kg

The area of **each face** of X is 784 cm²

5 (a) Zayan wants to know the density of Y.

He assumes that Y is identical to X.

What density should he get for Y?

Give your answer in grams per cubic centimetre.

[4 marks]

length of one side =
$$\sqrt{784}$$

mass of
$$x = 10.976 \times 1000 = 109769$$

density =
$$\frac{10976}{21952}$$
 = 0.5 gcm

Answer g/cm³

5 (b) In fact,

the mass of Y is less than the mass of X the area of each face of Y is greater than the area of each face of X.

What does this mean about the actual density of Y? Tick **one** box.

It is less than the answer to part (a)

It is equal to the answer to part (a)

It is greater than the answer to part (a)

It is not possible to tell